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The	HIGRAD	(High-Gradient	Atmospheric	Model)	computa=onal	fluid	dynamics	
(CFD)	soBware	has	been	updated	to	incorporate	a	new	par=cle	transport	rou=ne	
and	improvements	for	efficiency	and	stability	on	parallel	compu=ng	architectures.		
	
HIGRAD	uses	the	finite	volume	method	to	solve	the	compressible,	grid-filtered	
Navier-Stokes	equa=ons	on	a	regular,	Cartesian	grid.	It	was	developed	at	Los	
Alamos	Na=onal	Laboratory	(LANL)	and	has	been	employed	to	solve	a	variety	of	
scien=fic	problems	in	atmospheric	hydrodynamics.	
	
We	extend	this	func=onality	by	adding	a	lagrangian	par=cle	tracking	capability.	Our	
new	module	is	generalized	for	the	simula=on	of	par=cles	of	various	types	and	
proper=es.	Thus,	it	has	a	wide	range	of	poten=al	applica=ons,	from	cloud-physics	
to	spoTng	igni=ons	by	firebrands	in	wildfires.	
	
We	test	our	implementa=on	through	use	of	a	new	HIGRAD	test	case	-	a	two	
dimensional	(2D)	idealized	explosion	incorpora=ng	lagrangian	par=cles		-	and	
visualize	the	results	in	real	=me	using	a	newly-developed,	lightweight	graphics	
package	using	OpenGL.		
	
The	par=cle	tracking	module	is	designed	to	run	efficiently	on	massively	parallel	
architectures,	and	is	able	to	take	advantage	of	rank-parallelism	(via	MPI)	and		
threading	(OpenMP).

Introduction 

Lagrangian	par=cle	tracking	is	par=cularly	useful	in	problems	dominated	by	advec=on	and	diffusion	
effects	(Cheng	&	Plassmann,	2001).	Given	an	Eulerian	velocity	field,	the	goal	is	to	trace	the	=me	
trajectories	of	tagged	fluid	par=cles	as	the	flow	evolves	(Yeung	&	Pope,	1988).	When	designing	a	
parallel	algorithm	for	par=cle	tracking,	the	following	should	be	considered:	
	
• An	appropriate	interpola=on	scheme	(typically	bilinear)		
• A	method	of	communica=ng	par=cles	between	processes		
• A	scheme	to	update	par=cle	posi=ons	(typically	linear)	
• A	method	of	represen=ng	and	storing	the	par=cles	in	memory	
• An	efficient	algorithm	for	par=cle-par=cle	interac=on		

In	the	present	form,	our	par=cles	may	have	varying	proper=es	but	do	not	interact.	Thus	
computa=on	of	their	trajectories	is	a	parallel	independent	process.	
	
	

Background 

Real-time visualization 
We	test	two	different	methods	of	storing	and	communica=ng	par=cle	informa=on:	
	
A	four-dimensional	array	structure	that	stores	a4ributes	of	the	par7cles	present	in	
each	grid	cell	(Par7cle	version	1)	
				
Advantages:		A	natural	way	of	keeping	track	of	large	numbers	of	par=cles	of	different	
types;	can	easily	handle	mul=ple	par=cles	in	the	same	grid	cell	
Disadvantages:	Requires	memory	alloca=ons/dealloca=ons	on	transfer	of	par=cles	
between	cells;	difficult	to	debug	
	
A	one-dimensional	array	structure	containing	the	par7cles,	a4ributes	of	which	
include	the	grid	cells	in	which	they	reside	(Par7cle	version	2)	

Advantages:	Requires	fewer	memory	access	opera=ons;	conceptually	simpler	
Disadvantages:	May	be	more	difficult/inefficient	to	implement	a	par=cle	collision	
model	with	this	framework	
	

Particle representation 

Figure	1:	Wildfire	simula7on,	coupled	with	
FIRETEC.		
SoBware	has	the	capability	to	incorporate	
topography	and	varying	vegeta=on	types,	
derived	from	analysis	of	satellite	imagery	(e.g.	
Koo	et	al.,	2012)	
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Performance analysis 

Figure	4:	An	‘Ideal	Explosion’	simula7on	with	2500	par7cles	
A	real-=me	OpenGL	graphics	package	is	used	to	display	the	simula=on	results.	Here,	a	semicircular	packet	of	hot,	
dense	gas	surrounded	by	halo	of	par=cles	three	cells	wide	expands	and	produces	a	shock	front	that	interacts	with	a	
rectangular	block	of	par=cles.	The	domain	size	is	200x200,	=mestep	1e-7	s,	with	no-normal	flow	boundary	condi=ons.	
This	was	run	on	16	MPI	ranks	on	Intel	Xeon	Broadwell	processors.	Total	simula=on	=me	of	20,000	=mesteps	takes	
about	7	minutes.	The	par=cles	experience	drag	forces,	which	can	be	customized	by	the	user	to	reflect	differing	
par=cles	and	fluid	proper=es.	This	real-=me	OpenGL	package	provides	a	vital	tool	for	quick	visualiza=on	and	
debugging.		
	
Output	is	colored	by	density,	while	par=cle	posi=ons	are	marked	by	white	crosses.	
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Figure	2:	Visualiza7on	of	the	
turbulent	wake	of	a	wind	turbine	
A	wind	turbine	and	wake	model	has	
been	developed	to	model	the	power	
output	of	wind	arrays	(e.g.	Linn	et	al.	
2013)		 Figure	4:	MPI	rank	scaling	test	with	par7cles	

Graphs	of	execu=on	=me	and	speedup	vs.	MPI	rank	for	a	test	problem	featuring	132	par=cles	arranged	in	a	semicircle	
around	an	ini=al	pocket	of	hot	gas.	Simula=on	dimensions	are	1400x1400,	and	the	model	is	run	for	400	=mesteps.	
Par=cle	version	2	is	clearly	the	most	efficient.	Each	point	represents	the	mean	of	three	runs.	
	
The	following	srun	command	was	used	to	execute	these	simula=ons,	and	was	found	to	produce	the	best	results	on	
Intel	Xeon	Broadwell	nodes	
srun	--cpu_bind=core	--con0guous	–n	[nranks]	[executable]	[inpu:ile]	

	 Figure	5:	Par7cle	number	
scaling	test	Graphs	of	execu=on	
=me	vs.	par=cle	number	for	the	
test	problem	using	16	MPI	
ranks.	Par=cles	are	places	in	
boxes	at	the	center	of	each	
rank’s	domain.	The	simula=on	
dimensions	are	200x200,	and	
the	model	is	run	for	3000	
=mesteps,	un=l	the	shock	front	
reaches	the	right	wall.	Again,	
par=cle	version	2	is	clearly	the	
more	efficient.	
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We	have	developed	two	working	par=cle	representa=ons	and	tested	them	extensively	
with	MPI.	The	addi=on	of	a	real-=me	OpenGL	graphics	package	has	provided	a	useful	
tool	for	debugging.	Representa=on	of	the	par=cles	in	a	1D	array	structure	appears	to	
be	the	most	efficient	op=on	and	should	be	adopted	as	the	main	avenue	for	future	
development.	Possible	future	direc=ons	are	as	follows:	
	
Ø High	level	OpenMP	to	increase	parallelism	in	par=cle	rou=ne	(already	started)	
Ø Building	a	collision	model	–	this	will	require	keeping	track	of	the	cell	IDs	of	the	
par=cles	

Ø Building	an	ability	to	do	three	dimensional	(3D)	par=cle	simula=ons	
Ø Building	an	easy	way	for	the	user	to	specify	par=cle	proper=es	such	as	size	and	
type.	Eventually	we	would	strive	towards	a	system	that	allows	us	to	simulate	a	
range	of	par=cle	types	simultaneously.	

Figure	3:	Strong	scaling	2D	ideal	explosion	test	on	different	
LANL	machines	
Parallel	speedup	vs	number	of	MPI	ranks	for	a	test	problem	
featuring	an	expanding	semicircular	pocket	of	hot	gas.	
Simula=on	dimensions	are	700x1000.	The	model	is	run	for	
200	=me-steps.	Shown	are	curves	for	three	LANL	HPC	
machines:		
Grizzly:	Intel	Xeon	Broadwell	(2.1GHz,18	cores)	
Moonlight:		Intel	Xeon	E5-2670	(2.6GHz,	8	cores)	
Wolf:	Intel	Xeon	E5-2670	(2.6GHz,	8	cores)	
	
This	is	a	surprising	result	given	that	one	would	expect	Grizzly	
to	produce	the	best	scaling		
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